Climate Change and Drought in a Warmer World

Benjamin I Cook, Richard Seager, Jason Smerdon, Park Williams, Sloan Coats, Ed Cook, Dave Stahle,Toby Ault

Drought Impacts

van der Molen, et al (2011): Agricultural and Forest Meteorology

66 million trees killed since 2010 in California, as of August 2016

http://www.nbcbayarea.com/news/local/Bark-Beetle-Outbreak-Kills-Millions-of-Trees-Across-California-389122102.html

Drought is NOT just precipitation

Van Ioon (2016), WIREs Water

The Water Budget

Precipitation

Heterogeneous precipitation response

RCP85: 2081-2100

Low confidence in some regions

Knutti & Sedlacek (2013), Nature

Soil moisture changes much more widespread RCP8.5

IPCC, Fifth Assessment Report (Chapter 12)

-2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 3.0 4.0 5.0 7.0 11.0 Surface temperature change (°C)

Knutti & Sedlacek (2013), Nature

∆VPD (kPa)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Warming increases atmospheric demand for water

PDSI (2080-2099) ΔΡ

 $\Delta P,$ ΔET

$\Delta P, \Delta ET$ Wetter, 3 2 1 Europe and the Mediterranean 0 -1 -2 -3 -4 -5 Drier -6 CanESM2 CSIRO-Mk3.6.0 GFDL-ESM2G **IPSL-CM5A-LR MIROC-ESM-CHEM** CCSM4 GISS-E2-R GFDL-CM3 **MIROC5 MRI-CGCM3 CNRM-CM5** GFDL-ESM2M INMCM4.0 **MIROC-ESM** NorESM1-M

How robust is the drying across indicators?

-1

-3

-4

-5

-6

Central Plains

Most drying from increased evaporation

NADA (1100–1300)

Model (1850–2005)

Model (2050–2099)

Southwest

Doubly hit by increased evaporative demand AND reduced precipitation

- NADA (1100–1300)
- Model (1850–2005)
- Model (2050–2099)

Best Practices for Climate Models & Drought

Consider your drought variable.

What do you care about? Average aridity? Recurrence intervals? Drought severity?

Embrace uncertainty across models, regions, and indicators.

Think probabilistically, not deterministically.

Thank You

This work supported with funding from: NSF, NOAA, NASA

