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Local climate regulation by ecosystems
Terrestrial ecosystems affect earth’s climate JA Foley et al.
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deforestation in the Amazon may therefore be a signifi-
cantly warmer and somewhat drier local climate.

While the impacts of tropical deforestation have
received considerable attention, other studies have shown
that land-use and land-cover change in semi-arid (Zeng et
al. 1999; Wang and Eltahir 2000a, 2000b, 2000c, 2000d),
temperate (Copeland et al. 1996; Bonan et al. 1997, 1999;
Reale and Dirmeyer 2000; Reale and Shukla 2000; Heck et
al. 2001) and boreal ecosystems (Bonan et al. 1992, 1995)
can also greatly affect the climate.

In addition, several modeling exercises have examined
the consequences of global-scale land-cover changes on
climate systems (eg Betts 1999; Bounoua et al. 2002;
Brovkin et al. 1999; Zhao et al. 2001). These studies have
shown that such changes can substantially affect the cli-
mate over large regions – sometimes more than the
changes expected from global warming. These effects are
mainly confined to a few geographic regions, however.

Characterizing the climatic significance of land-cover
change is not as easy as discussing global warming. There
are no simple generalities; some regions become warmer
while others become colder, some become wetter as others
become drier. As a result, the impacts on the global cli-
mate are fairly small on average. Unlike the warming
effect of increasing greenhouse gases, these variations are
extremely dependent on geography, and cannot simply be
reduced to an average value. Any assessments of future cli-

mate change should therefore consider both the impacts
of greenhouse gases and land-use practices on local,
regional, and global scales.

! Biophysical feedbacks on global warming

What about indirect effects on vegetation cover that
might result from global warming? Could shifting plant
patterns also affect the climate, and would these changes
amplify or reduce the warming effects?

Biophysical feedbacks can occur through the two-way
interactions between climate and vegetation cover
(Figure 3). For example, global warming may affect the
structure and distribution of terrestrial ecosystems around
the world. These climate-induced changes may affect bio-
physical processes at the land–atmosphere boundary and,
as a result, create a positive or negative feedback effect.

A new suite of computer models has recently been
developed to consider the interactions between vegeta-
tion and climate. Most of these models are based on exist-
ing GCMs of the atmosphere, linked to representations of
land surface processes and global vegetation dynamics
(Foley et al. 1998, 2000). These models build on a long
tradition of global climate modeling and the more recent
inclusions of detailed, mechanistic models of surface bio-
physical processes. Coupled climate–vegetation models
are still in the early development stages, however, and

Figure 2. Climatic effects of tropical deforestation on water balance, boundary layer fluxes, and climate. In vegetation-covered areas
(left), the low albedo of the forest canopy provides ample energy for the plants to photosynthesize and transpire, leading to a high latent
heat loss that cools the surface. In deforested areas (right), bare soil’s higher albedo reduces the amount of energy absorbed at the
surface. Latent heat loss is severely reduced and the surface warms, as it has no means of removing the excess energy through
transpiration.

Foley et al. 2003, Frontiers in Ecology & Env.
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1. “Local” scale: Assessing the impacts of recent land 
cover change using MODIS
• Collaborators: Bill Smith, Tyler Lark, Holly Gibbs, Missy Holbrook, and Peter Huybers

2. Regional scale: Centennial trends in extreme 
temperatures and agricultural land use
• Collaborators: Ethan Butler, Karen McKinnon, Andrew Rhines, Martin Tingley, Missy 

Holbrook, and Peter Huybers

3. Global scale: Ag. land use and extreme temperatures 
across major temperate cropping systems
• Collaborators: Andrew Rhines, Deepak Ray, Stefan Siebert, Missy Holbrook, and Peter 

Huybers

4. Implications for pest management under climate 
change



Recent cropland expansion: 2008–2012

reinforcing the importance of previous studies
focused on this region [12, 13].

Croplands also substantially infilled the lesser-cul-
tivated areas of Southern Iowa and Northern Mis-
souri, a region characterized by steeply sloped hills
normally reserved for livestock grazing. In western
Kansas and the panhandles of Oklahoma and Texas,
we found highly concentrated expansion hotspots,
many of which are indicative of new, center-pivot irri-
gated fields (supplementary figure S4). Located above
the rapidly-depleting Ogallala aquifer, cropland
expansion in this region raises substantial concerns
aboutwater use and sustainability [34, 35].

Cropland abandonment also varied spatially across
theUS, but in general lacked the strong regional patterns

of expansion. Instead, small concentrated patches of
cropland loss were scattered across a landscape of low
converted area (supplementary figure S2). Locations of
highest abandonment also had high levels of expansion,
resulting inhotbeds of activity in bothdirections.

Observing the location of new cropland relative to
existing cropland highlights where crops are expanding
outside their typical range and extent. In particular, the
perimeters of the Appalachians, Ozarks, and the North-
woods of Minnesota all experienced relative rates of
cropland expansion greater than 100% (figure 2), sig-
nifying that the amount of cropland hasmore than dou-
bled. As croplands continue to expand into these new
frontiers, the direct tradeoffs between agricultural pro-
duction andnature are likely to intensity [36, 37].
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Figure 1.Estimate of net conversion to and from cropland from trajectory analysis of the cropland data layer 2008–2012. Amount of
net conversion is displayed as the percent of the landscape that was converted to or from cropland from 2008 to 2012, aggregated to
5.6 kmpixels for display.
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cropland
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prices



Texas Panhandle EVI:
2009 conversion of grass to maize
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Texas 
Panhandle:
conversion of 
grass to maize

estimated ET 
from MODIS ET 
algorithm (Mu 
et al. 2011)
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Regional ΔEVI from conversion of grass
to maize and soybeans
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How are extremes changing?

Story County, Iowa
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Cropland intensification is associated with 
cooler extreme temperatures

Intensification → greater productivity → greater PET → cooler temperature extremes
Cooling is only sustained when soil moisture is sufficient for rainfed areas
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cooling persists regardless of drought 
status

Mueller et al. 2015 NCC
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cooling persists regardless of drought 
status

Drought threshold: 10th percentile of sc-pm-PDSI from Dai et al. 2011. Dust bowl removed. Mueller et al. 2016 NCC
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Extreme temperature and land use 
trends across the globe

Mueller et al. 2016 in review

green = major cropping area

Explanatory variables: cropland area, irrigated area, intensification



Consistent cooling across intensified summer 
cropping systems (1961–present)−0.5
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Figure 6: Associations between 95th percentile summer temperature trends and trends in (a) cropland area, (b) area
equipped for irrigation, (c) summer precipitation, and (d) SIFsf–scaled NPPan across the Central North America region.
Stations are binned according to land use trends, and asterisks indicate that trends for a given bin are significantly different
from the stations exhibiting no change in each explanatory variable (p<0.05 for a single asterisk, p<0.01 for double
asterisks). Edge bins are inclusive of weather stations with either lesser or greater trends in each explanatory variable. Bin
widths are proportional to the Voronoi polygon area associated with each weather station, and bin colors are consistent
with the maps in Figures 2 and 3.
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Figure 8: Same as in Figures 6 and 7, but for Northern North America. One outlier station where the 95th percentile summer temperature trend was >2�C per decade has
been removed from the boxplots and statistical analysis. Phenology is shown in (e) and (f) for the major crop production areas of the Canadian Prairies.
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Figure 11: Same as in Figures 6 and 7, but for Northern East Asia. Phenology is shown in (e) and (f) for the major crop production areas of Northeast China.
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Figure 12: Same as in Figures 6 and 7, but for Southern East Asia. Phenology is shown in (e) and (f) for the major crop production areas of the North China Plain.
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Figure 14: Same as in Figures 6 and 7, but for Southern South America. Phenology is shown in (d) and (e) for the major
crop production areas of the Argentine Pampas.
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Conclusions

1. Recent land cover change in the Great Plains leads to 
cooler LST mid-summer, warmer shoulder seasons

2. 100-yr trend towards cooler air temperature extremes 
associated with cropland intensification, greater ET –
not cropland expansion

3. Consistent relationships between intensification and 
cooler extremes across the globe



1. Land use influences the climatic conditions 
pests experience
• Seasonal changes
• Distributional changes

2. Potential for feedbacks between pest 
infestations, crop/forest productivity, and 
temperatures

Implications for pest management under 
climate change
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change in land surface variables (Figure 3). Cumulative GPP
reduction in the northern portion of the study area was one
exception, where cumulative GPP reduction was less than
GPP reduction in other severely impacted areas (Figure 3c).

Also, LST increases were greater in areas of lower elevation
in beetle-affected forests (Figure 3e). Agreement between cu-
mulative mortality and maximum winter albedo change was
less apparent when mapped (Figure 3f). Missing and/or low

(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(j)

Figure 2. (a, c, e, g, i) Change in land surface variables relative to beetle attack initiation, stratified by 2011
cumulative mortality severity (the average unattacked values of land surface variables are listed in the upper part
of the panels, and time series number of satellite observations is in the lower part of the panels). Average
unattacked values are given above each year in panels where equation (2) was used to calculate land surface var-
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Importance of extreme temperatures
for crop yield

• High temperatures impact a host of 
physiological processes
• Moisture/temperature stress can impede 

reproductive processes (e.g. maize 
silking)

• Acceleration of development

• Dramatic yield losses projected 
under climate change due to 
extremes (e.g. nearly 80% by 2100 
for US maize)

• How will the temperature distribution 
shift with climate change?



Outline 

1. “Local” scale: Assessing the impacts of recent land 
cover change using MODIS
• Collaborators: Bill Smith, Tyler Lark, Holly Gibbs, Missy Holbrook, and Peter Huybers

2. Regional scale: Centennial trends in extreme 
temperatures and agricultural land use
• Collaborators: Ethan Butler, Karen McKinnon, Andrew Rhines, Martin Tingley, Missy 

Holbrook, and Peter Huybers

3. Global scale: Ag. land use and extreme temperatures 
across major temperate cropping systems
• Collaborators: Andrew Rhines, Deepak Ray, Stefan Siebert, Missy Holbrook, and Peter 

Huybers

4. Implications for agricultural pests



Conclusions

1. Land use change will continue to influence climate in 
agricultural regions
• Recent land cover change in the Great Plains leads to cooler LST 

mid-summer, warmer shoulder seasons
• Long-term reduction in air temperature extremes associated with 

cropland intensification, greater ET – not cropland expansion
• Consistent relationships between intensification and cooler 

extremes across the globe

2. Pest damages have the potential to influence local 
temperatures
• Potential for feedbacks
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Surface energy balance
Rn = H + LE + G + S + ε
Rn = net radiation
H = sensible heat flux (heat energy transferred from surface to atmosphere)
LE = latent heat flux (from evapotranspiration)

sometimes just “E” or “λE”
G = ground heat flux (fairly small)
S = heat storage in canopy (usually very small)
ε = residual errors

Rn – G ≈ H + LE
Units are fluxes of energy: W m-2

Reminder: Watt = Joule second-1

1 W m-2 = 1 J m-2 s-1


