Agricultural land use change and regional climate

Nathan D. Mueller

Department of Earth and Planetary Sciences and Department of Organismic and Evolutionary Biology Harvard University

Local climate regulation by ecosystems

Foley et al. 2003, Frontiers in Ecology & Env.

Outline

- 1. "Local" scale: Assessing the impacts of recent land cover change using MODIS
 - Collaborators: Bill Smith, Tyler Lark, Holly Gibbs, Missy Holbrook, and Peter Huybers
- 2. Regional scale: Centennial trends in extreme temperatures and agricultural land use
 - Collaborators: Ethan Butler, Karen McKinnon, Andrew Rhines, Martin Tingley, Missy Holbrook, and Peter Huybers
- 3. Global scale: Ag. land use and extreme temperatures across major temperate cropping systems
 - Collaborators: Andrew Rhines, Deepak Ray, Stefan Siebert, Missy Holbrook, and Peter Huybers
- 4. Implications for pest management under climate change

Recent cropland expansion: 2008–2012

Lark et al. 2015 ERL

- Net conversion of 3 million acres into cropland
- Based on USDA cropland data layer
- High commodity
 prices

NET CONVERSION

Texas Panhandle EVI: 2009 conversion of grass to maize

Mueller et al. in prep

estimated ET from MODIS ET algorithm (Mu et al. 2011)

Regional ΔEVI from conversion of grass to maize and soybeans

Average EVI difference post – pre-conversion from MODIS pixels with >75% conversion, binned to 0.5 degree grid cells

Regional ΔET from conversion of grass to maize and soybeans

Average EVI difference post – pre-conversion from MODIS pixels with >50% conversion, binned to 0.5 degree grid cells

Regional ΔLST from conversion of grass to maize and soybeans

Average EVI difference post – pre-conversion from MODIS pixels with >50% conversion, binned to 0.5 degree grid cells

Outline

- 1. "Local" scale: Assessing the impacts of recent land cover change using MODIS
 - Collaborators: Bill Smith, Tyler Lark, Holly Gibbs, Missy Holbrook, and Peter Huybers
- 2. Regional scale: Centennial trends in extreme temperatures and agricultural land use
 - Collaborators: Ethan Butler, Karen McKinnon, Andrew Rhines, Martin Tingley, Missy Holbrook, and Peter Huybers
- 3. Global scale: Ag. land use and extreme temperatures across major temperate cropping systems
 - Collaborators: Andrew Rhines, Deepak Ray, Stefan Siebert, Missy Holbrook, and Peter Huybers
- 4. Implications for pest management under climate change

How are extremes changing?

Story County, Iowa

use quantile regression

note: temperature data must be corrected for rounding artifacts (Rhines et al. 2015)

How are extremes changing?

Story County, Iowa

use quantile regression

note: temperature data must be corrected for rounding artifacts (Rhines et al. 2015)

Cooler extreme summer temperatures in US

DEPARTMENT OF COMMERCE Herbert Hoover, Secretary BUREAU OF THE CENSUS W. M. Steuart, Director

e.

UNITED STATES CENSUS OF AGRICULTURE 1925

Cooling from cropland expansion? No consistent relationship

Mueller et al. 2016 NCC

Much greater rates of land conversion in the late 1800s Other variables examined: precipitation, irrigation

Cropland intensification is associated with cooler extreme temperatures

Mueller et al. 2016 NCC

Intensification \rightarrow greater productivity \rightarrow greater PET \rightarrow cooler temperature extremes Cooling is only sustained when soil moisture is sufficient for rainfed areas

Testing the interaction with drought

Tx95 trends for areas with high irrigation growth

Drought threshold: 10th percentile of sc-pm-PDSI from Dai et al. 2011. Dust bowl removed.

Mueller et al. 2015 NCC

Testing the interaction with drought

Tx95 trends for areas with high irrigation growth

Tx95 trends for rainfed areas with high NPPan growth

Drought threshold: 10th percentile of sc-pm-PDSI from Dai et al. 2011. Dust bowl removed.

Mueller et al. 2016 NCC

Outline

- 1. "Local" scale: Assessing the impacts of recent land cover change using MODIS
 - Collaborators: Bill Smith, Tyler Lark, Holly Gibbs, Missy Holbrook, and Peter Huybers
- 2. Regional scale: Centennial trends in extreme temperatures and agricultural land use
 - Collaborators: Ethan Butler, Karen McKinnon, Andrew Rhines, Martin Tingley, Missy Holbrook, and Peter Huybers
- 3. Global scale: Ag. land use and extreme temperatures across major temperate cropping systems
 - Collaborators: Andrew Rhines, Deepak Ray, Stefan Siebert, Missy Holbrook, and Peter Huybers
- 4. Implications for pest management under climate change

Extreme temperature and land use trends across the globe

Explanatory variables: cropland area, irrigated area, intensification

Mueller et al. 2016 in review

Consistent cooling across intensified summer cropping systems (1961–present)

Mueller et al. in review

Conclusions

1. Recent land cover change in the Great Plains leads to cooler LST mid-summer, warmer shoulder seasons

2. 100-yr trend towards cooler air temperature extremes associated with cropland intensification, greater ET – *not cropland expansion*

3. Consistent relationships between intensification and cooler extremes across the globe

Implications for pest management under climate change

- 1. Land use influences the climatic conditions pests experience
 - Seasonal changes
 - Distributional changes

2. Potential for feedbacks between pest infestations, crop/forest productivity, and temperatures

Pest infestation

Bright, Hicke, and Meddens 2013 JGR: Bark beetle tree mortality in Western US

nmueller@fas.harvard.edu

Harvard University Center for the Environment

Importance of extreme temperatures for crop yield

- High temperatures impact a host of physiological processes
 - Moisture/temperature stress can impede reproductive processes (e.g. maize silking)
 - Acceleration of development
- Dramatic yield losses projected under climate change due to extremes (e.g. nearly 80% by 2100 for US maize)
- How will the temperature distribution shift with climate change?

Outline

- 1. "Local" scale: Assessing the impacts of recent land cover change using MODIS
 - Collaborators: Bill Smith, Tyler Lark, Holly Gibbs, Missy Holbrook, and Peter Huybers
- 2. Regional scale: Centennial trends in extreme temperatures and agricultural land use
 - Collaborators: Ethan Butler, Karen McKinnon, Andrew Rhines, Martin Tingley, Missy Holbrook, and Peter Huybers
- 3. Global scale: Ag. land use and extreme temperatures across major temperate cropping systems
 - Collaborators: Andrew Rhines, Deepak Ray, Stefan Siebert, Missy Holbrook, and Peter Huybers
- 4. Implications for agricultural pests

Conclusions

- 1. Land use change will continue to influence climate in agricultural regions
 - Recent land cover change in the Great Plains leads to cooler LST mid-summer, warmer shoulder seasons
 - Long-term reduction in air temperature extremes associated with cropland intensification, greater ET – not cropland expansion
 - Consistent relationships between intensification and cooler extremes across the globe
- 2. Pest damages have the potential to influence local temperatures
 - Potential for feedbacks

Bright, Hicke, and Meddens 2013 JGR: Bark beetle tree mortality in Western US

Surface energy balance

$Rn = H + LE + G + S + \varepsilon$

Rn = net radiation

- H = sensible heat flux (heat energy transferred from surface to atmosphere)
- LE = latent heat flux (from evapotranspiration) sometimes just "E" or "λE"
- G = ground heat flux (fairly small)
- S = heat storage in canopy (usually very small)
- ϵ = residual errors

$Rn-G\approx H+LE$

Units are fluxes of energy: $W m^{-2}$ Reminder: Watt = Joule second⁻¹ 1 $W m^{-2} = 1 J m^{-2} s^{-1}$