

New Tools for Identifying and Prioritizing Range Shifting Invasive Plants

National Institute of Food and Agriculture

If you have a species or state that you'd like us to consider for the live demo, please type it in the Q & A box.

Webinar Details

- Welcome
- A recording of this webinar will be available within a week at

http://www.neipmc.org/go/ipmtoolbox

We Welcome Your Questions

 Please submit a question at any time using the Q&A feature

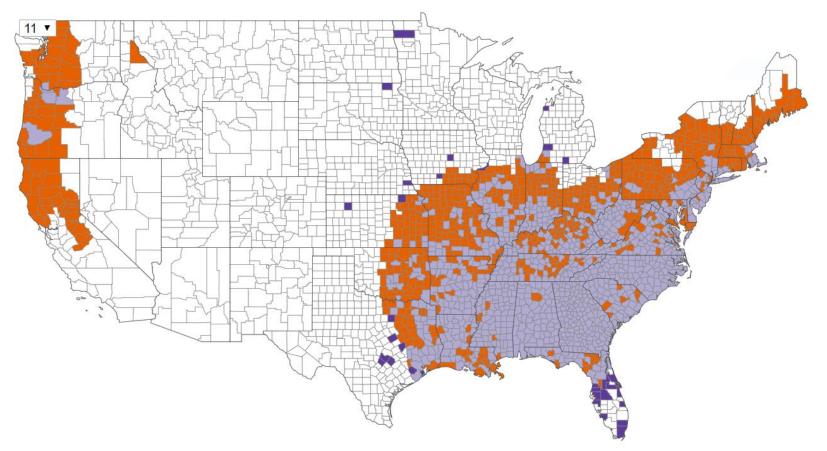
 If you'd like to ask a question anonymously, please indicate that at the beginning of your query.

Webinar Presenters

Jenica Allen

Bethany Bradley

Today's Agenda


- Invasive Species and Climate Change
- Invasive Plant Range Shift Maps
- Invasive Range Shifter Listing Tool
- Prioritizing Lists with Impacts Assessments

Some Questions For You

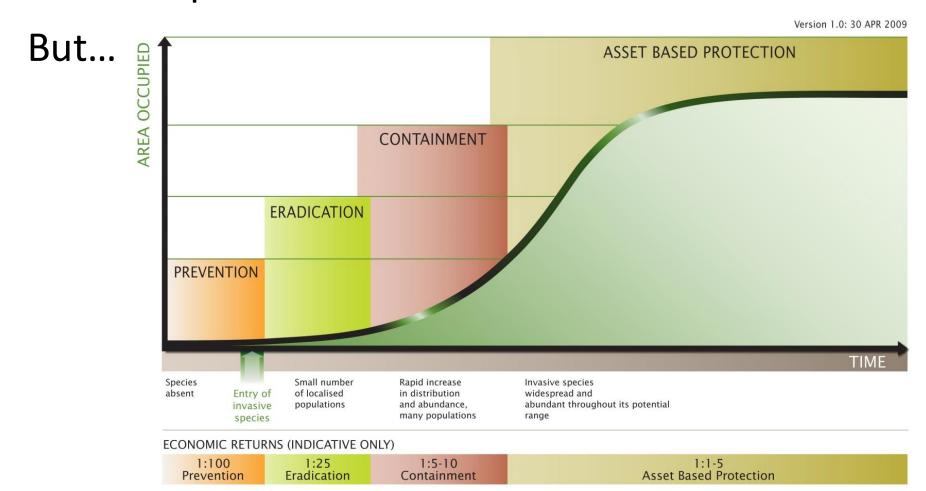
New tools for identifying and prioritizing range-shifting invasive plants

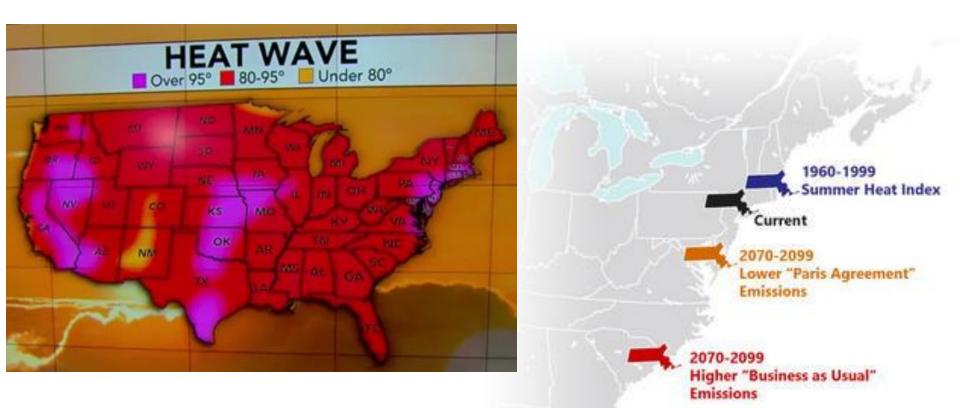
Jenica Allen Mount Holyoke College Bethany Bradley
University of Massachusetts Amherst

EDDMapS team: Joe LaForest, Chuck Bargeron, Sai Desari

Jeff Garnas, Brittany Laginhas, Mei Rockwell-Postel

Project funded by the Northeastern IPM Center through Grant #2014-70006-22484 and supported by Southern IPM Center through Grant #2018-70006-28884 from the USDA National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.





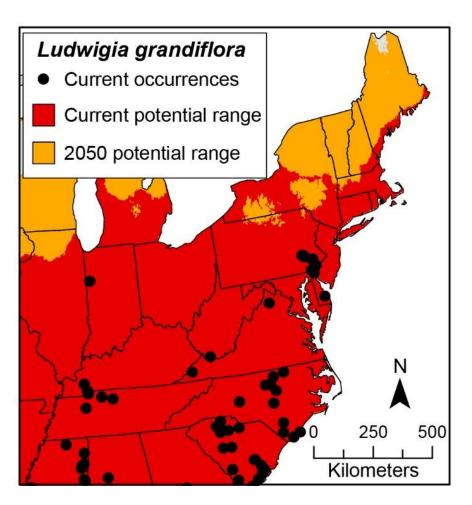
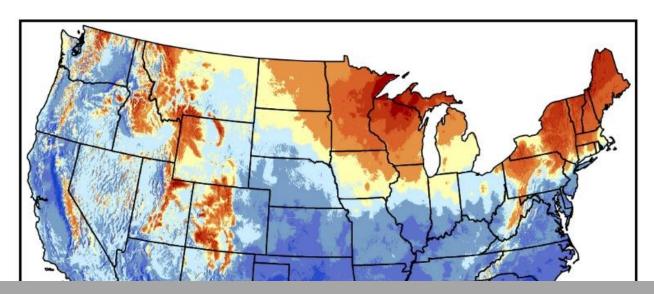
Invasives + Climate Change

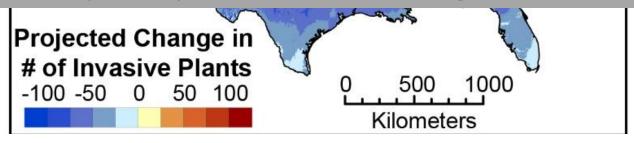
We've got enough on our plate dealing with invasive species alone!

Changing climate, new ecosystems

How Summer Temperatures Will Feel Depending on Future Greenhouse Gas Emissions

(Invasive) species respond by shifting their ranges


Photo: Alain Dutartre

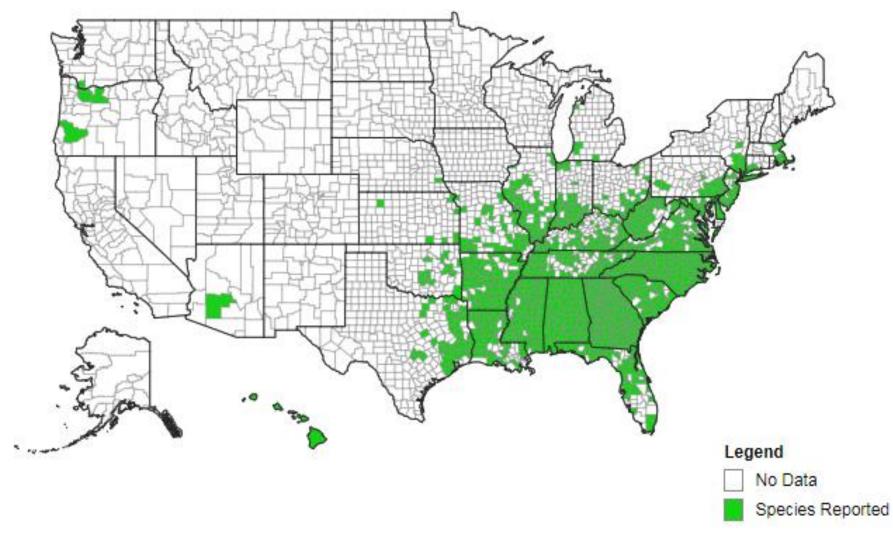
Allen & Bradley, 2016

Range shifts can occur for many species

Climate change offers an opportunity to be proactive about invasive species prevention and management.

Allen & Bradley, 2016

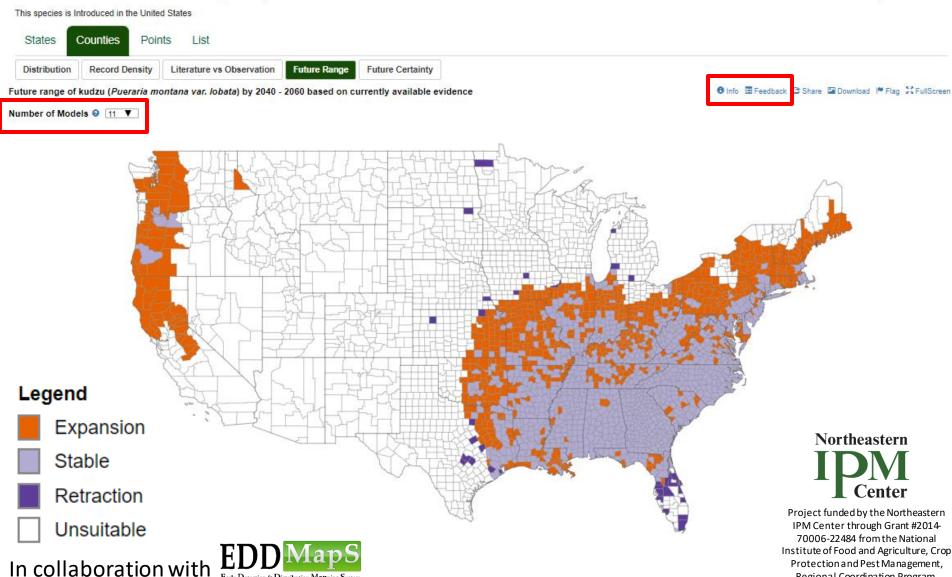
Current Distribution


kudzu

Pueraria montana var. lobata (Willd.) Maesen & S. Almeida

This species is Introduced in the United States

USDA PLANTS Symbol:PUMO Invasive Plant Atlas Species Information


Range Shift Map

kudzu

Pueraria montana var. lobata (Willd.) Maesen & S. Almeida

USDA PLANTS Symbol: PUMO Invasive Plant Atlas Species Information

Protection and Pest Management, Regional Coordination Program.

Future Range Certainty

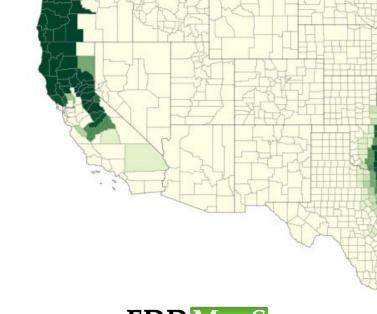
kudzu

Pueraria montana var. lobata (Willd.) Maesen & S. Almeida

This species is Introduced in the United States

USDA PLANTS Symbol: PUMO Invasive Plant Atlas Species Information

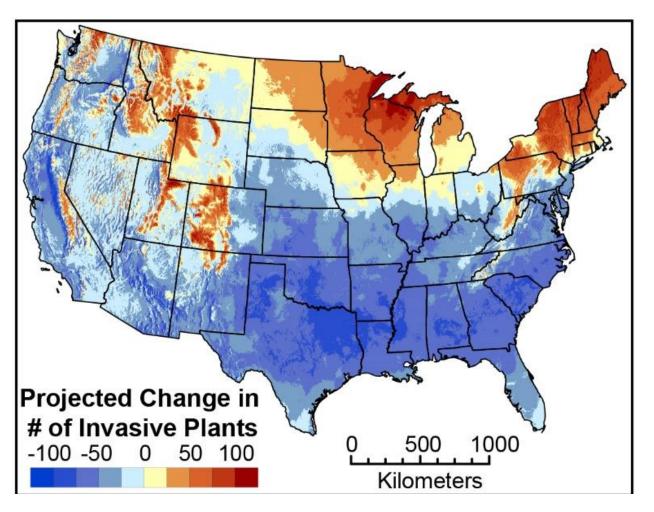
Number of **Models**



Northeastern Project funded by the Northeastern

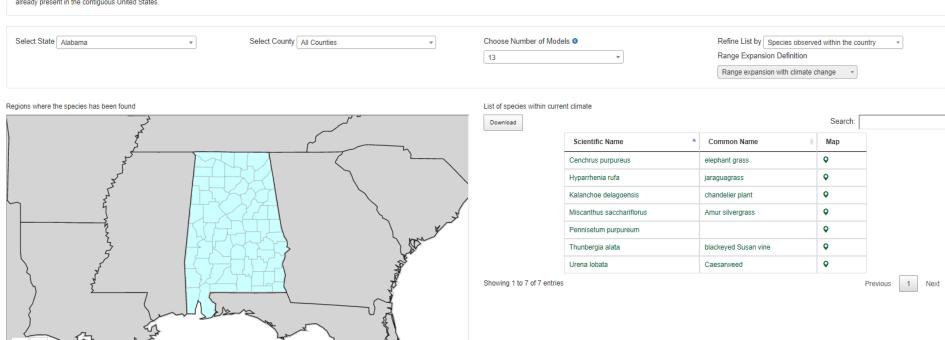
IPM Center through Grant #2014-70006-22484 from the National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.

In collaboration with



QUESTIONS?

Use range shift projections for many species to generate state or county lists



Allen & Bradley, 2016

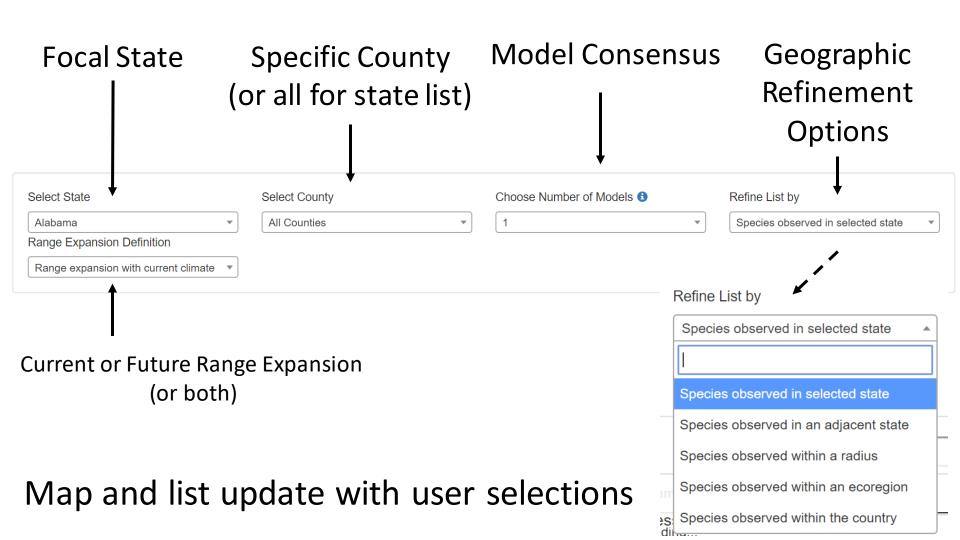
Range Shift Listing Tool

Invasive Range Expanders Listing Tool

Terrestrial invasive plants are expected to shift their ranges in response to changing climate. This tool provides lists of terrestrial invasive plants expected to expand their ranges into the chosen county or state with climate change by 2040-2060. Climate change expansions are based on 13 future climate models and users must select the level of consensus (1-13 models) required to add a species to the state or county list. In addition, users can filter the list to species currently observed within a chosen geographic proximity to the focal county or state. Lists for range expansion with climate change include species that have not been observed within the focal state or county, do not have current suitable climate there, but are predicted to have suitable climate by 2040-2060 according to the selected number of climate models. The lists generated are for informational purposes and contain only species that are already present in the contiguous United States.

This tool was funded by the Northeastern IPM Center through Grant #2014-70006-22484 and supported by Southern IPM Center throught Grant #2018-70006-28884 from the USDA National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.Read modeling details in the scientific publication here

Department of of Food and



Project funded by the Northeastern IPM Center through Grant #2014-70006-22484 from the National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.

User Defined Options

QUESTIONS?

Prioritize watch lists with impacts assessment (EICAT)

- Read titles & abstracts of all peer-reviewed papers for the species of interest
- Identify all papers that measure impacts

Diversity and Distributions, (Diversity Distrib.) (2015) 21, 1360–1363

Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT)

Charlotte L. Hawkins¹, Sven Bacher², Franz Essl³, Philip E. Hulme⁴, Jonathan M. Jeschke^{5,6}, Ingolf Kühn^{7,8}, Sabrina Kumschick^{9,10}, Wolfgang Nentwig¹¹, Jan Pergl¹², Petr Pyšek^{12,13}, Wolfgang Rabitsch¹⁴, David M. Richardson⁹, Montserrat Vilà¹⁵, John R. U. Wilson^{9,10}, Piero Genovesi¹⁶ and Tim M. Blackburn^{1,17,18,*}

Mei Rockwell-Postel

Example Impacts Summary

	D	Е	F	G	Н							
1												
2	Arundo donax											
3	SUMMARY											
	Туре	Max. Recorded	All Impact Scores	Number of	Habitat Codes							
4		Impact		Studies								
5	Competition	4 (Major)	4,4,4,4,4,4,4,4,3,3,3	12	Permanent Rivers, Streams, Creeks [includes waterfalls]; Wetlands (inland); Marine Coastal; Grassland							
6	Hybridization	NA			(mana), marine coastal, crassiana							
7	Disease Transmission	Not ranked	Agricultural impact	1	Wetlands (inland)							
8	Parasitism	NA										
9	Poisoning/toxicity	NA										
10	Bio-fouling	NA										
11	Physical Impact	4 (Major)	4,4,4,4,3,3	6	Permanent Rivers, Streams, Creeks [includes waterfalls]; Wetlands (inland)							
12	Chemical Impact	3 (Moderate)	2,3	2	Permanent Rivers, Streams, Creeks [includes waterfalls]; Wetlands (inland)							
13	Structural Impact	4 (Major)	4,4,4,4,4,4,4,3,3,3	11	Permanent Rivers, Streams, Creeks [includes waterfalls]; Wetlands (inland); Grassland							
14	Interaction with Other Aliens	3 (Moderate)	3, Agricultural impact	2	Grassland; Wetlands (inland)							
15	Agricultural	Present	Disease transmission, interaction									
16	Economic	NA										
17	Human Health	NA										
18												
19												
<u>20</u>	Summary Sheet Summary	/ Sheet Metadata [Data Sheet Data Sheet Me	etadata +								

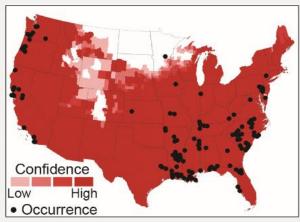
Example Impacts Data Sheet

	Α	В	С	D	Е	F	G	Н	1	J	К	L	М	N
1	Assess	USDA Code ▼	Scientific name	Common name	Growth form	First author	Year	Journal	DOI	Citation	Affected Syster	Impact	Mechanism	Descriptic—
2	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Ambrose	2007	University of C	Not Available	Ambrose, R.F	. Ecological	2 - Minor	Chemical Impact	Alters soil nutrients post fire
3	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Tzanakakis	2015	Water	10.3390/w701	Tzanakakis, V	Ecological	3 - Moderate	Chemical Impact	Alters carbon storage
4	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Rieger	1989	USDA Forest	Not Available	Rieger, J.P. a	i Ecological	4 - Major	Competition	Inhibits establishment of native species
5	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Bell	1997	Plant Invasion	Not Available	Bell, G.P., 199	e Ecological	4 - Major	Competition	Outcompetes native vegetation
6	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Tracy	1998	Arundo and Sa	Not Available	Tracy, J.L. ar	Ecological	4 - Major	Competition	Decreases native vegetation
	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Ambrose	2007	University of C	Not Available	Ambrose, R.F	.Ecological	4 - Major	Competition	Reduces native plant abundance, density, and productivity
8	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Mack	2008	Weed Science	10.1614/WS-0	Mack, R.N., 2	(Ecological	4 - Major	Competition	post fire Outcompetes neighboring native plants
9	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Coffman	2010	Biological Inva	10.1007/s105	Coffman, G.C	. Ecological	4 - Major	Competition	Reduces native plant cover after fire
	MRP	ARDO4	Arundo donax	Giant reed	Graminoid, Subshrub, Shrub	Cushman	2010	Biological Inva	10.1007/s1053	Cushman, J.F	l Ecological	4 - Major	Competition	Reduces native plant species
4	> S	ummary Sł	neet Summary Sh	eet Metadata	Data She	pet Data 9	Sheet Met	adata +)		: 4			

Of 100 range-shifting plants assessed:

Scanned 14,000 + titles, compiled data from 865 papers

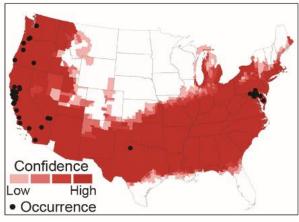
- 67 evaluated (33 data deficient)
- 9 high priority ("major" ecological impact AND socio-economic impact)
- 38 medium priority ("major" ecological impact OR socio-economic impact)
- 17 low priority (no "major" ecological impact, no socio-economic impact)


High Impact, Could Establish Now and Expand Range by 2050

Ludwigia grandiflora (water primrose)

HIGH Impact: Outcompetes native plants, creates anoxic conditions in water bodies, increases flood risk.

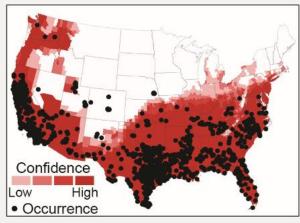
HIGH Vulnerability: Invades wetlands and water bodies. Introduced as an ornamental, so arrival could be fast and already identified in New York. Propagules spread easily through waterways, boats, and wildlife. Chemical control can be locally effective.



Rubus ulmifolius (elmleaf blackberry)

HIGH Impact: Outcompetes natives, creates dense thickets, threatens native endemic *Rubus* species through hybridization, and hosts crop diseases.

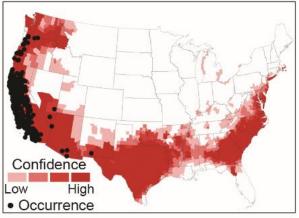
HIGH Vulnerability: Invades forests and pastures, including in the Northeast (populations in Delaware). Introduced as an ornamental; arrival could be fast. Mechanical and chemical control somewhat effective.


High Impact, Could Establish by 2050

Arundo donax (giant reed)

HIGH Impact: Outcompetes native wetland plants, alters wetland structure, increases fire frequency., acts as a hosts for crop pests and pathogens.

HIGH Vulnerability: Invades rivers, streams, wetlands, and coastal areas. Widely introduced as a biofuel crop, so introduction could be fast. Difficult to control and spreads by rhizomes along waterways.



Avena barbata (slender wild oat)

HIGH Impact: Outcompetes native grassland species. Hosts crop pathogens (wheat crown rust)

HIGH Vulnerability: Invades grasslands, crop systems, and disturbed fields. Introduced as a fodder crop and as a crop contaminant. Some chemical controls and mechanical removal prior to seed production can be effective.

- We have a unique opportunity to identify and prioritize range shifting invasive plants
 - Species maps: EDDMapS County Distribution Maps
 - State and county lists: https://www.eddmaps.org/rangeshiftlisting/
 - Impacts assessments prioritize "high risk" range shifting invasives
 - EICAT template: https://people.umass.edu/riscc/resources.html
- But, we need to coordinate efforts across borders
 - Next up expanding NY + New England regional partnerships

Find more about RISCC and get the EICAT template: https://people.umass.edu/riscc/

QUESTIONS?

National Institute Agriculture

Some Questions For You

Upcoming Events

2020 RFA is available: Deadline November 15th

https://www.northeastipm.org/grant-programs/ipm-center-grants/ipm-partnership-grants/

Find a Colleague

 To post a profile about yourself and your work:

http://neipmc.org/go/APra

"Find a Colleague" site

http://neipmc.org/go/colleagues

Archive of Today's Webinar

 Today's webinar will be available to view on demand in a few business days.

http://www.neipmc.org/go/ipmtoolbox

You can watch as often as you like.

Acknowledgments

This presentation was funded in part by the Northeastern IPM Center through Grant #2018-70006-28882 from the National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.