

Tick IPM Series

Part 4: Impacts of Forest Management on Tick-Borne Disease Transmission and Exposure Risk

August 10, 2020

Welcome

A recording of this webinar will be available within a week at

http://www.neipmc.org/go/ipmtoolbox

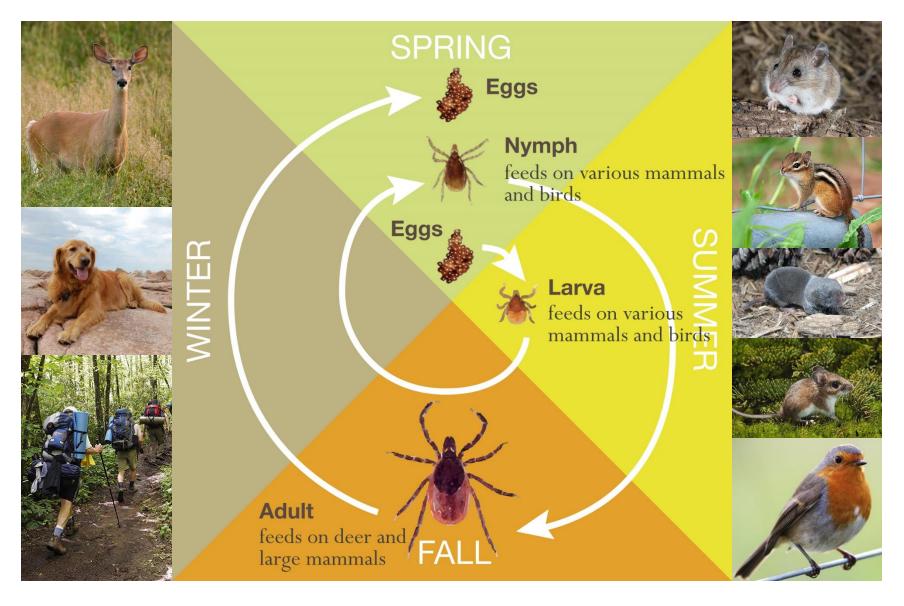
We Welcome Your Questions

- Please submit a question at any time using the Q&A feature to your right at any time
- If you'd like to ask a question anonymously, please indicate that at the beginning of your query.

Presenter

Allison (Allie) Gardner University of Maine

Some Questions for You



Impacts of Forest Management on Tick-Borne Disease Transmission and Exposure Risk

Allison (Allie) Gardner • University of Maine • 10 August 2020

Ecology of Tick-Borne Disease Transmission

Forest Management and the Tick Life Cycle

Forest management may impact tick-host encounter frequencies and off-host abiotic conditions for ticks throughout the life cycle...

White-tailed deer (个DON)

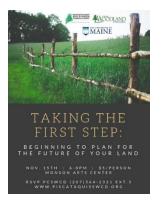
Rodents (↑NIP) and their predators (↓NIP)

Insulation during winter (个 off-host tick survival)

Humidity during summer (个 off-host tick survival)

Forest Management and Landowner Goals

Forest management to control tick-borne disease may complement landowners' other objectives for their woodland...


Table 2 Urquhart & Courtney 2011, For Pol & Econ 13: 535-544 Characteristics of six woodland owner types derived from cluster analysis.

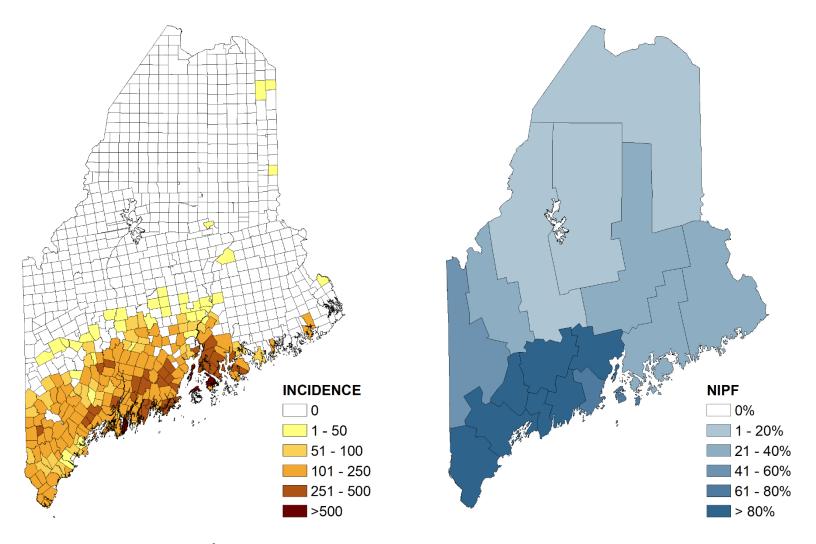
Factors	Owner groups							
	I	Ind	PC	AmO	MfO	С	F	Sig.
X1: Financially-oriented	0.758	-0.253	-0.373	- 0.521	1.093	-0.491	59.552	<.0001
X2: Conservation	-0.825	-0.491	0.282	0.541	0.140	0.599	27.157	<.0001
X3: Private consumption	-0.184	-0.13	0.716	-0.461	0.389	-0.827	28.830	<.0001
X4: Public Amenity	-0.483	-0.134	-0.361	1.561	0.459	-0.882	81.528	<.0001
X5: Personal enjoyment	-1.353	0.494	0.340	-0.723	0.345	0.011	48.746	<.0001
X6: Environmental	-0.327	-0.187	-0.463	-0.07	0.544	0.625	19.805	<.0001
X7: Constrained	-0.060	0.582	-0.809	-0.089	0.008	0.218	22.332	<.0001
X8: Grant dependent	-0.098	-0.736	0.323	0.251	0.059	0.448	18.577	<.0001
Numbers of cases $(n=399)$	38	96	78	50	79	58		

I = Investor; Ind = Individualist; PC = Private Consumer; AmO = Amenity Owner; MfO = Multifunctional Owner; C = Conservationist. Significant factor loadings (0.450 or above) are shown in italics.

Outline for This Presentation


 Highlight my lab's research concerning the impacts of timber harvesting on tick-borne disease transmission dynamics

2. Discuss other examples of the impacts of active forest management on human risk of exposure to tick-borne disease



3. Place these management strategies in the context of forest landowner objectives and decision-making processes

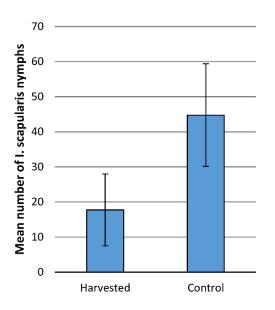
4. Discuss the impacts of forest management on tick-borne disease transmission at the landscape scale

The Spread of Lyme Disease in Maine

Lyme cases/100,000, 2010-2020

Percent non-industrial private forest landownership

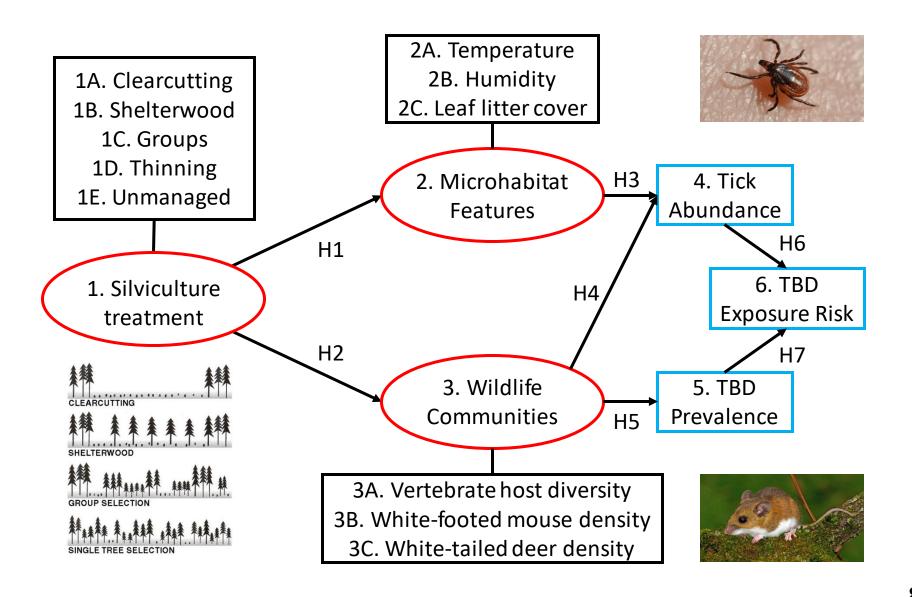
Forest Ownership and Management in Maine


Table 3. Typology cluster titles, grouped into six categories.

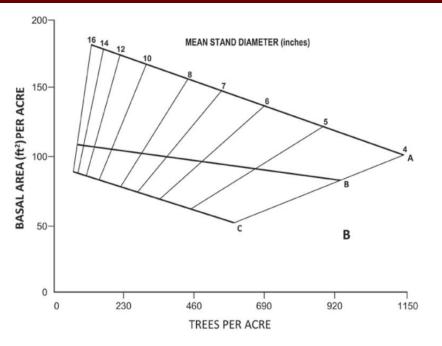
Silver et al. 2015, *J Forestry* 113(5): 490-499

Category	Cluster titles					
Production	Timber Agriculturalist, Forest Utilitarian, Investor, Timber Manager, Timber Producer, Classic Owner, Economically Interested, Self-interested, Farmer Forest Owner, Income from Forestry, Economist					
Protection	Timber Conservationist, Resource Conservationist, Self-employed, Resident Conservationist, John Muir, Nontimber, Naturalists, Preservationist	15				
Consumption/Amenity	Forest Environmentalist, Poor Rural Residents, Amenities, Small Towners, Henry David Thoreau, Consumptive, Retreat	12				
Recreationists	Range Pragmatist, Forest Recreationist, Affluent Weekenders, Utilities, Hobby Owner, Conceptually Interested Owner, Urban Forest Owner, Free Time and Hobbies, Traditionalist, Woodland Retreat, Nontimber, Private Consumer, Enthusiasts	21				
Passive	Passive Owner, Indifferent Farmer, Disinterested Owner, Jane Doe, Ready to Sell, Individualists	13				
Multiobjective	Multiobjective Owner, Multifunctional, Part-time/Previous Farmers, Working the Land	15				

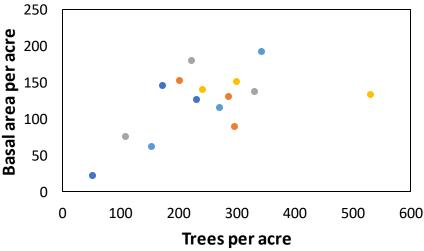
Categories are from Boon et al. (2004) and Urquhart and Courtney (2011); n = 25. Two articles were excluded for relevance only to cross-boundary cooperation and not land management objectives or timber harvesting.



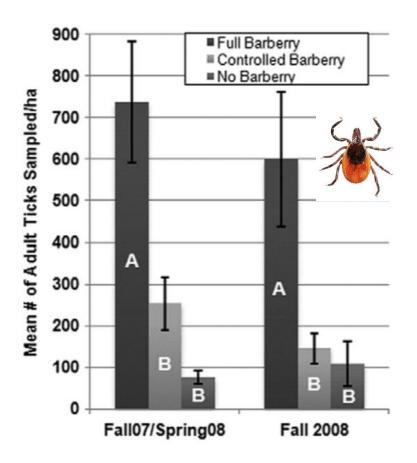
Preliminary field season suggests that nymphal *I. scapularis* abundance is lower at sites harvested recently (0-5 yrs ago) compared to a control site harvested >20 yrs ago


Questions?

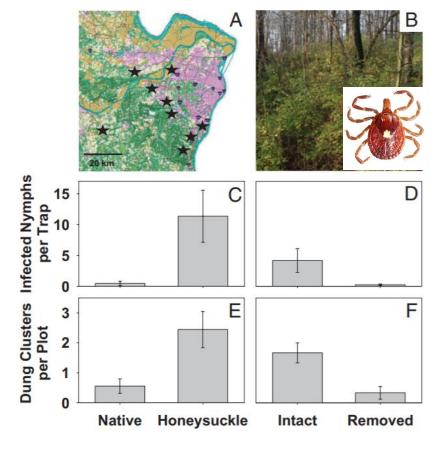
Effects of Silviculture on Lyme Dynamics



Timber Harvesting and Ticks

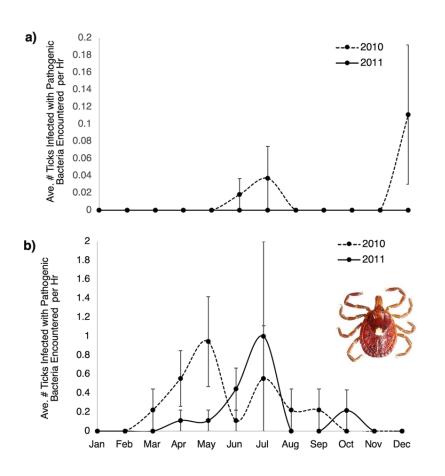


Block 1Block 2Block 3Block 4Block 5


- --Vegetation measurements
- --Off-host tick dragging
- --Small mammal trapping
- --Trail camera surveys for wildlife
- --Temp/humidity monitoring
- --Tick-borne pathogen assays

Invasive Plant Removal and Tick Ecology

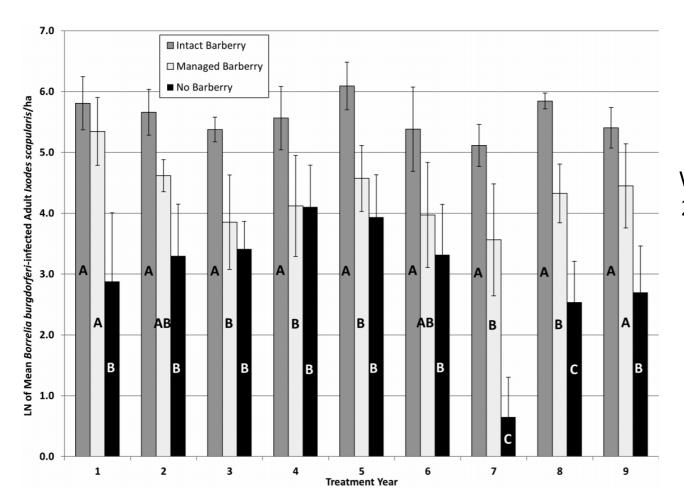
Numerous previous studies that demonstrate that invasive plant removal reduces tick-borne disease risk by various pathways...


Williams et al. 2009, Environ Entomol 38: 977-84

Allan et al. 2010, PNAS 107: 18523-27

Prescribed Burns and Tick Ecology

Tick densities also are reduced in the immediate aftermath of prescribed burns, although they may rebound...

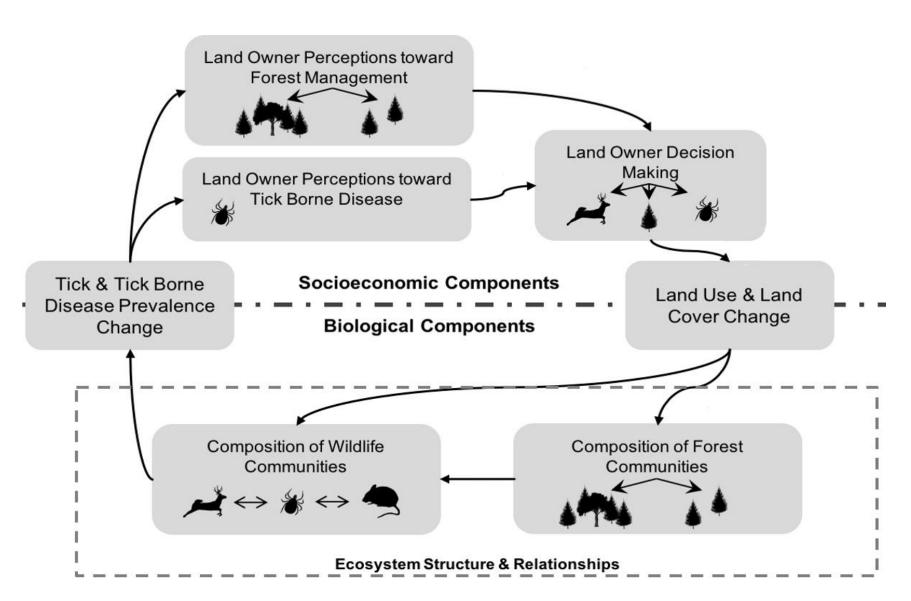

Apr Jun Aug Oct Dec

Stafford et al. 1998, *J Med Entomol* 35: 510-13

Gleim et al. 2019, Sci Rep 9: 9974

Temporal Dimensions of Management

- There is a strong temporal dimension to the impacts of active forest management on tick-borne disease transmission
- Management must occur regularly for benefits to be maintained


Williams et al. 2017, Environ Entomol

46: 1329-38

Questions?

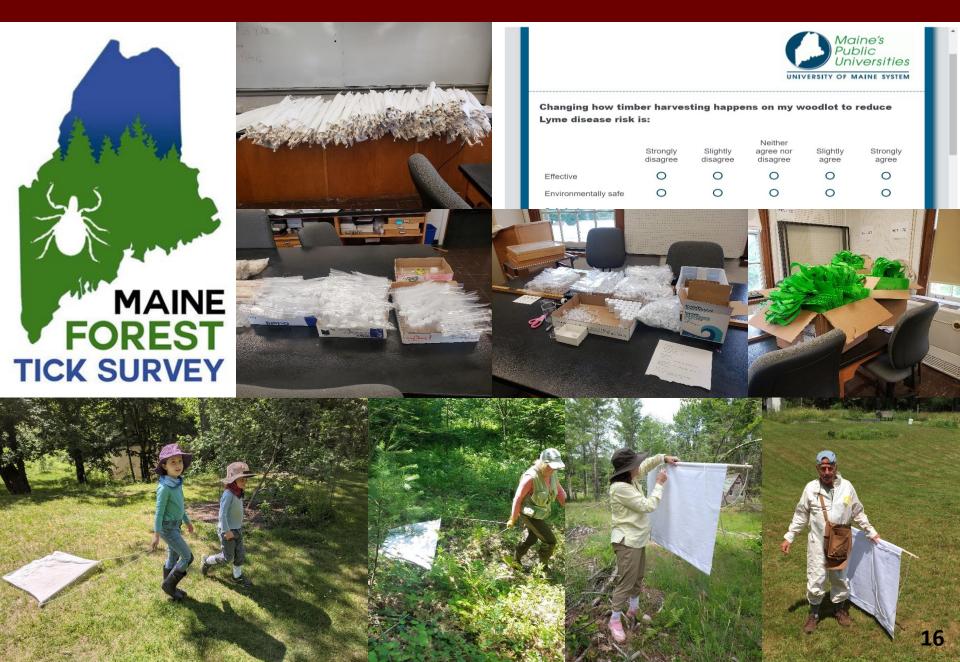
Lyme Disease as a Socio-Ecological System

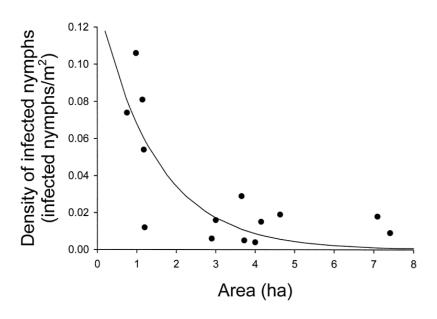
Landowner Attitudes and Practices

Goal: Characterize the ways in which private woodlot owners incorporate tick-borne disease prevention into their woodlot management decisions currently, and how willing they would be to adapt their management behavior to reduce the risk of tick-borne disease exposure in the future

Last month, when I visited nature I	Never	Occasionally	Sometimes	Usually	Always
Dressed in protective clothing.	1	2	3	4	5
Used insect repellent.	1	2	3	4	5
Performed a tick check.	1	2	3	4	5

LOCATION	METHOD	SAMPLE SIZE	RESPONDENTS	RESPONSE RATE
NEW GLOUCESTER	DOPU	86	55	69%
NEW GLOUCESTER	Mailing	104	34	33%
	Total:	190	89	47%


Citizen Science: Maine Forest Tick Survey



- Active tick surveillance citizen science project
- 125 citizen scientist participants enrolled in Summer 2020 and an additional 125 will be enrolled in Summer 2021
- All citizen scientists located in southern and coastal Maine and own woodlots >10 acres
- Participants drag for ticks on their own land at least four times throughout the summer
- Participants also fill out questionnaires about their property management history and forest management decision-making
- UMaine students identify ticks to species and conduct pathogen testing

Behind the Scenes and in the Field . . .

Ticks and Forests at the Landscape Scale

Allan et al. 2003, Cons Biol 17: 267-72

- Much of landscape-scale research concerning human management of forests focuses on forest fragmentation in suburban environments
- Future research should address how mosaics of management practices on individual forested properties alter tick-borne disease risk at landscape scales
- As well, how social networks among landowners influence adoption of practices that benefit human health

Questions?

Some Questions for You

Find a Colleague

- To post a profile about yourself and your work:
- http://neipmc.org/go/APra
- "Find a Colleague" site
- http://neipmc.org/go/colleagues

Upcoming Webinars

 Tick IPM #5: Pathogens Found in Ticks Collected on School Grounds and Public Parks

Drs. Jody Gangloff-Kaufmann, Joellen Lampman, Matt Frye, NYS IPM Program. Dr. Laura Goodman, College of Veterinary Medicine, Cornell University. September 14, 2020, 1:00 p.m.

 Tick IPM #6: Host-Targeted Tick Control – What Works, What Doesn't, and What's New

Dr. Andrew Li, Research Entomologist, USDA-ARS Invasive Insects Biocontrol and Behavior Laboratory, Beltsville, MD. September 30, 2020, 11:00 a.m.

Tick IPM #7: Leaf Litter/Snow Removal for Tick Reduction

Dr. Kirby C. Stafford III, Connecticut Agricultural Experiment Station, October 7, 2020, 11:00 a.m.

For Updates: https://www.northeastipm.org/ipm-in-action/the-ipm-toolbox/

Recording of Tick IPM Webinar Series

- Past recordings and today's Webinar will be available to view on demand in a few business days.
- http://www.neipmc.org/go/ipmtoolbox
- You can watch as often as you like.

Acknowledgments

 $This\ presentation\ was\ funded\ in\ part\ by\ the\ Northeastern\ IPM\ Center\ through$ Grant #2018-70006-28882 from the National Institute of Food and Agriculture, Crop Protection and Pest Management, Regional Coordination Program.

Acknowledgments

Collaborators

Dr. Jessica Leahy, UMaine

Dr. Carly Sponarski, UMaine

Elissa Ballman, UMaine

Dr. Laura Kenefic, US Forest Service

Andrew Richley, US Forest Service

Dr. Anne Lichtenwalner, UMaine

Maine Forest Tick Survey Students

Christine Conte, MS, Dec. 2019
Stephanie Hurd, PhD Student
Katie Perry, Master's Student
Casey Olechnowicz, PhD Student
Alyssa Marini, Lab Technician

